Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942.

نویسندگان

  • F X Cunningham
  • Z Sun
  • D Chamovitz
  • J Hirschberg
  • E Gantt
چکیده

A gene encoding the enzyme lycopene cyclase in the cyanobacterium Synechococcus sp strain PCC7942 was mapped by genetic complementation, cloned, and sequenced. This gene, which we have named crtL, was expressed in strains of Escherichia coli that were genetically engineered to accumulate the carotenoid precursors lycopene, neurosporene, and zeta-carotene. The crtL gene product converts the acyclic hydrocarbon lycopene into the bicyclic beta-carotene, an essential component of the photosynthetic apparatus in oxygen-evolving organisms and a source of vitamin A in human and animal nutrition. The enzyme also converts neurosporene to the monocyclic beta-zeacarotene but does not cyclize zeta-carotene, indicating that desaturation of the 7-8 or 7'-8' carbon-carbon bond is required for cyclization. The bleaching herbicide 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA) effectively inhibits both cyclization reactions. A mutation that confers resistance to MPTA in Synechococcus sp PCC7942 was identified as a point mutation in the promoter region of crtL. The deduced amino acid sequence of lycopene cyclase specifies a polypeptide of 411 amino acids with a molecular weight of 46,125 and a pI of 6.0. An amino acid sequence motif indicative of FAD utilization is located at the N terminus of the polypeptide. DNA gel blot hybridization analysis indicated a single copy of crtL in Synechococcus sp PCC7942. Other than the FAD binding motif, the predicted amino acid sequence of the cyanobacterial lycopene cyclase bears little resemblance to the two known lycopene cyclase enzymes from nonphotosynthetic bacteria. Preliminary results from DNA gel blot hybridization experiments suggest that, like two earlier genes in the pathway, the Synechococcus gene encoding lycopene cyclase is homologous to plant and algal genes encoding this enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a fourth family of lycopene cyclases in photosynthetic bacteria.

A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacteria...

متن کامل

The biosynthetic pathway for myxol-2' fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002.

Synechococcus sp. strain PCC 7002 produces a variety of carotenoids, which comprise predominantly dicylic beta-carotene and two dicyclic xanthophylls, zeaxanthin and synechoxanthin. However, this cyanobacterium also produces a monocyclic myxoxanthophyll, which was identified as myxol-2' fucoside. Compared to the carotenoid glycosides produced by diverse microorganisms, cyanobacterial myxoxantho...

متن کامل

Functional Characterization of the FNT Family Nitrite Transporter of Marine Picocyanobacteria

Many of the cyanobacterial species found in marine and saline environments have a gene encoding a putative nitrite transporter of the formate/nitrite transporter (FNT) family. The presumed function of the gene (designated nitM) was confirmed by functional expression of the gene from the coastal marine species Synechococcus sp. strain PCC7002 in the nitrite-transport-less mutant (NA4) of the fre...

متن کامل

A cyanobacterial gene, sqdX, required for biosynthesis of the sulfolipid sulfoquinovosyldiacylglycerol.

The sulfolipid sulfoquinovosyldiacylglycerol is present in the photosynthetic membranes of plants and many photosynthetic bacteria. A novel gene, sqdX, essential for sulfolipid biosynthesis in the cyanobacterium Synechococcus sp. strain PCC7942 is proposed to encode the cyanobacterial sulfolipid synthase catalyzing the last reaction of the pathway.

متن کامل

A novel plasmid recombination mechanism of the marine cyanobacterium Synechococcus sp. PCC7002.

We describe a novel mechanism of site-specific recombination in the unicellular marine cyanobacterium Synechococcus sp. PCC7002. The specific recombination sites on the smallest plasmid pAQ1 were localized by studying the properties of pAQ1-derived shuttle-vectors. We found that a palindromic element, the core sequence of which is G(G/A)CGATCGCC, functions as a resolution site for site-specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 1994